Transient Trapping of Helium by Bubble Formation in Liquid Gallium

Don Cowgill, Rion Causey, Kristin Hertz, Dan Morse Sandia National Laboratories, Livermore, CA 94550

> PFC Meeting, Livermore, California December 6-8, 2004

- Flowing Liq. Metals have potential to pump He by bubble formation.
- Sandia's Bubbles in Liquid Metals (BLM) code predicts significant bubble nucleation and growth in liquid metals.
- Experimental Goal: Test and benchmark the model at low flux.
- Status of Penning Trap Experiments:
 Re-emission mini-trap -- preliminary results indicate bubbles
 He profiling trap -- experiments in progress

The BLM code follows self-nucleation, growth and coalescence of He bubbles.

- Modification of Sandia's Nano-Bubble Evolution (NBE) model for He bubbles in aging metal tritides.
 - Bubbles are nucleated by self-trapping (He-He encounter).
 - Bubble pressure is determined by surface tension $(2g/r_N)$.
 - Bubbles diffuse according to Stokes-Einstein (D_N=kT/6phr_N).
- BLM uses coupled differential equations with source and loss terms to follow concentration depth profiles of bubble groups (N=2ⁿ⁻¹).
 - He implantation depth profile by SRIM code
 - Bubbles grow by He atom accumulation and by coalescence.
 - Bubbles dissociate according to their stability $\boldsymbol{E}_{\!N}$
- Result: Low concentrations of large, slowly-diffusing bubbles occur well beyond the implant range.

BLM predicts high He concentrations at both high and low flux conditions.

• Cumulative He retention reaches 20% under divertor-like conditions.

• He concentrations of 10⁻⁴ He/Ga also occur under laboratory-like (long, low flux) exposures.

Our mini-Penning experiment is examining dynamic retention by pressure

change.

Water

Cu Rods

Penning Cathodes

Valves to Evac, Fill

Getter

• Gettered Penning discharge with liquid metal cathodes.

A small gas volume (40cc) produces high sensitivity to pumping by the liq. metal.

0412.4DC _____

Thermocouple

1 torr Barotron

Magnitude and temperature dependence of the retention indicates bubble formation.

- Observed magnitude is
 - more than calculated for atom diff. profile.
 - in agreement with BLM code.

(Code has not been run long enough to reach equilibrium.)

- Observed magnitude increases with T
- *opposite* to normal diffusion

behavior, - *in agreement* with

enlarging bubbles.

	Temp(°C)	He quantity
Observed	60	6e14 He
(from D p)	90	1e15
_	125	3e15
Calculated	125	1.5e12
in diff profile	325	5.4e11
Code prediction	n 40	1e14 at 0.1s
with bubbles	225	(1e13 at 7ms)
	325	(2e13 at 7ms)

The re-emission time constant is also consistent with bubble formation.

- Draining of L-thick slab has approx. $t^{1/2}$ time dependence: $M(t)/M(0) \approx (4Dt/\pi L^2)^{1/2}$
 - With estimated Ga film thickness of L \approx .25 mm, fit gives $D_{eff} \approx 3x \cdot 10^{-6} \text{ cm}^2/\text{s}$
- Self-diffusion in Liq Ga: $D_{SD}(55^{\circ}C) = 2.6 \times 10^{-5} \text{ cm}^2/\text{s}$
- The 10x lower diffusivity requires

$$Dia_{bubble} = 10 \ Dia_{Ga} \approx 2.7 \ nm$$
 or about 4000 He/bubble.

04012.6DC_____

Our second, larger Penning experiment is verifying He buildup in the liquid metal.

- ³He Penning discharge produces 10¹⁷ He/cm²-s on liquid metal at 1-2 keV.
 - Liquid metal covers one trap (cathode) plate.
- ³He buildup in liquid metal is measured by real time ³He(d,p)⁴He NRA.
 - Use of d⁺ beam requires shielded accelerator and remote discharge control.

First tests of the complete system with liquid Ga occurred last week.

Observations:

- 3 He(d,p) count rate: Background < .1 Hz 15 mtorr 3 He ≈ 0.5 Hz At 2 mA/cm² ≈ 8 Hz
- Laser reflection showed liquid surface became turbulent around 2 mA/cm².
 - Flux threshold!
- After long discharge, count rate remained high & surface dulled.
 - Ga contaminated.

Summary of experimental results:

• Experiments with mini-Penning trap support He bubble formation under even modest plasma fluxes.

Magnitude of pumping effect is

- too large for diffusion profile.

Pumping increases with temperature:

- opposite to diffusive retention
- consistent with growing bubbles.

Long time constant for re-emission

- indicates 10x slower diffusive release
- is consistent with 4000 atom (3nm) bubbles.
- Initial test with the accelerator-based Penning discharge show He retention consistent with bubbles and BLM calculations.
 - 3 He(d,p) count rate gives $\sim 10^{-4}$ He/Ga in top 2 mm.
 - Observed turbulence threshold (not yet predicted).

Experimental Plans:

- Add improvements to accelerator-based experiment.
 - Control contamination: Clean system by GDC.
 - Add *in-situ* sample film wiper
 - Reduce sample thickness variation
- Acquire model testing data for liquid Ga using parameter space.
 - Vary temperature, flux
 - Examine turbulence (bubbling) threshold (Look for BLM code predictions of bubble growth runaway, ...)
- Examine deuterium bubble formation in liquid Ga.
 - Run deuterium Penning and measure with ³He.
 - Look for turbulence threshold
- Repeat experiments using liquid Li and Sn.

